Self-Protected Low Side Driver with Temperature and Current Limit

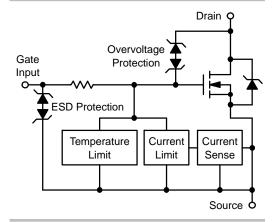
NCV8401A/B is a three terminal protected Low-Side Smart Discrete device. The protection features include overcurrent, overtemperature, ESD and integrated Drain-to-Gate clamping for overvoltage protection. This device offers protection and is suitable for harsh automotive environments.

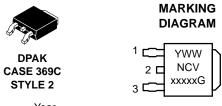
Features

- Short Circuit Protection
- Thermal Shutdown with Automatic Restart
- Over Voltage Protection
- Integrated Clamp for Inductive Switching
- ESD Protection
- dV/dt Robustness
- Analog Drive Capability (Logic Level Input)
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

Typical Applications

- Switch a Variety of Resistive, Inductive and Capacitive Loads
- Can Replace Electromechanical Relays and Discrete Circuits
- Automotive / Industrial




ON Semiconductor®

www.onsemi.com

V _{DSS} (Clamped)	R _{DS(ON)} TYP	I _D MAX (Limited)
42 V	23 mΩ @ 10 V	33 A*

*Max current may be limited below this value depending on input conditions.

Y = Year

WW = Work Week 1 = Gate xxxxx = 8401A or 8401B 2 = Drain G = Pb-Free Package 3 = Source

ORDERING INFORMATION

Device	Package	Shipping [†]
NCV8401ADTRKG	DPAK (Pb-Free)	2500/Tape & Reel
NCV8401BDTRKG	DPAK (Pb-Free)	2500/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit		
Drain-to-Source Voltage Internally Clamped			42	V	
Drain-to-Gate Voltage Internally Clamped $(R_{GS} = 1.0 \text{ M}\Omega)$			42	V	
Gate-to-Source Voltage			±14	V	
Drain Current – Continuous			Internally Limited		
Total Power Dissipation @ $T_A = 25^{\circ}C$ (Note 1) @ $T_A = 25^{\circ}C$ (Note 2)		P _D	1.1 2.0	W	
Thermal Resistance, Junction-to-Case Junction-to-Ambient (Note 1) Junction-to-Ambient (Note 2)		$egin{array}{l} R_{ hetaJC} \ R_{ hetaJA} \ R_{ hetaJA} \end{array}$	1.6 110 60	°C/W	
Single Pulse Drain–to–Source Avalanche Energy (V_{DD} = 25 Vdc, V_{GS} = 5.0 Vdc, I_L = 3.65 Apk, L = 120 mH, R_G = 25 Ω , T_{Jstart} = 150°C) (Note 3)		E _{AS}	800	mJ	
Load Dump Voltage (V _{GS} = 0 and 10 V, R _I = $2.0~\Omega$, R _L = $3.0~\Omega$, t _d = $400~ms$)			65	V	
Operating Junction Temperature		TJ	-40 to 150	°C	
Storage Temperature			-55 to 150	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Minimum FR4 PCB, steady state.

- 2. Mounted onto a 2" square FR4 board (1" square, 2 oz. Cu 0.06" thick single–sided, t = steady state).
- 3. Not subject to production testing.

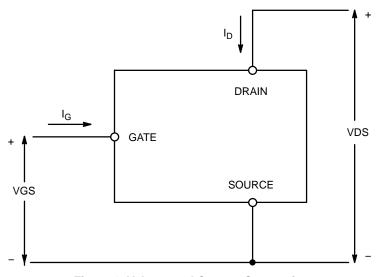


Figure 1. Voltage and Current Convention

$\textbf{MOSFET ELECTRICAL CHARACTERISTICS} \ (T_J = 25^{\circ}\text{C unless otherwise noted})$

Characte	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS						
Drain-to-Source Clamped Breakdown Vo (V _{GS} = 0 Vdc, I _D = 250 μ Adc) (V _{GS} = 0 Vdc, I _D = 250 μ Adc, T _o	V _{(BR)DSS}	42 42	46 44	50 50	Vdc	
Zero Gate Voltage Drain Current $(V_{DS} = 32 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$ $(V_{DS} = 32 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_{J})$	I _{DSS}		1.5 6.5	5.0	μAdc	
Gate Input Current ($V_{GS} = 5.0 \text{ Vdc}, V_{DS} = 0 \text{ Vdc}$)	I _{GSSF}		50	100	μAdc	
ON CHARACTERISTICS						
	V _{GS(th)}	1.0	1.8 5.0	2.0	Vdc -mV/°C	
Static Drain-to-Source On-Resistance (N $_{GS}$ = 10 Vdc, I $_{D}$ = 5.0 Adc, T $_{J}$ (V $_{GS}$ = 10 Vdc, I $_{D}$ = 5.0 Adc, T $_{J}$	R _{DS(on)}		23 43	29 55	mΩ	
Static Drain-to-Source On-Resistance (N $_{GS}$ = 5.0 Vdc, I $_{D}$ = 5.0 Adc, T $_{CS}$ (V $_{GS}$ = 5.0 Vdc, I $_{D}$ = 5.0 Adc, T $_{CS}$	R _{DS(on)}		28 50	34 60	mΩ	
Source–Drain Forward On Voltage (I _S = 5 A, V _{GS} = 0 V)	V _{SD}		0.80	1.1	V	
SWITCHING CHARACTERISTICS (Note	4)	•	•	•	•	•
Turn-ON Time (10% V _{IN} to 90% I _D)	V _{IN} = 0 V to 5 V, V _{DD} = 25 V	t _{ON}		41	50	μs
Turn-OFF Time (90% V _{IN} to 10% I _D)	$I_D = 1.0 \text{ A}, \text{ Ext R}_G = 2.5 \Omega$	t _{OFF}		129	150	1
Turn-ON Time (10% V _{IN} to 90% I _D)	V _{IN} = 0 V to 10 V, V _{DD} = 25 V	t _{ON}		16	25	
Turn-OFF Time (90% V _{IN} to 10% I _D)	$I_D = 1.0 \text{ A, Ext R}_G = 2.5 \Omega$	t _{OFF}		164	180	1
Slew-Rate ON (80% V _{DS} to 50% V _{DS})	V_{in} = 0 to 10 V, V_{DD} = 12 V, R_L = 4.7 Ω	-dV _{DS} /dt _{ON}		1.27	2.0	V/μs
Slew–Rate OFF (50% V_{DS} to 80% V_{DS})	$R_L = 4.7 \Omega$	dV _{DS} /dt _{OFF}		0.36	0.75	
SELF PROTECTION CHARACTERISTIC	S ($T_J = 25^{\circ}C$ unless otherwise noted)					
Current Limit	$V_{GS} = 5.0 \text{ V}, V_{DS} = 10 \text{ V}$ $V_{GS} = 5.0 \text{ V}, T_J = 150^{\circ}\text{C} \text{ (Note 4)}$	I _{LIM}	25 11	30 16	35 21	Adc
	$V_{GS} = 10 \text{ V}, V_{DS} = 10 \text{ V}$ $V_{GS} = 10 \text{ V}, T_J = 150^{\circ}\text{C} \text{ (Note 4)}$		30 18	35 25	40 28	
Temperature Limit (Turn-off)	$V_{GS} = 5.0 \text{ V (Note 4)}$	T _{LIM(off)}	150	175	200	°C
Thermal Hysteresis	V _{GS} = 5.0 V	$\Delta T_{LIM(on)}$		15		°C
Temperature Limit (Turn-off)	V _{GS} = 10 V (Note 4)	$T_{LIM(off)}$	150	165	185	°C
Thermal Hysteresis	V _{GS} = 10 V	$\Delta T_{LIM(on)}$		15		°C
GATE INPUT CHARACTERISTICS (Note	<u>'</u>		1		1	1
Device ON Gate Input Current	$V_{GS} = 5 V I_D = 1.0 A$	I _{GON}		50	100	μΑ
	$V_{GS} = 10 \text{ V } I_D = 1.0 \text{ A}$			400	700	
Current Limit Gate Input Current	$V_{GS} = 5 \text{ V}, V_{DS} = 10 \text{ V}$	I _{GCL}		0.1	0.5	mA
	V _{GS} = 10 V, V _{DS} = 10 V			0.7	1.0	
Thermal Limit Fault Gate Input Current	$V_{GS} = 5 \text{ V}, V_{DS} = 10 \text{ V}$	I _{GTL}		0.6	1.0	mA
	V _{GS} = 10 V, V _{DS} = 10 V			2.0	4.0	
ESD ELECTRICAL CHARACTERISTICS	$(T_J = 25^{\circ}C \text{ unless otherwise noted}) (N_J = 25^{\circ}C \text{ unless otherwise noted})$	1	1		1	
Electro-Static Discharge Capability Human Body Model (HBM) Machine Model (MM)		ESD	4000 400			V

^{4.} Not subject to production testing.
5. Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.

TYPICAL PERFORMANCE CURVES

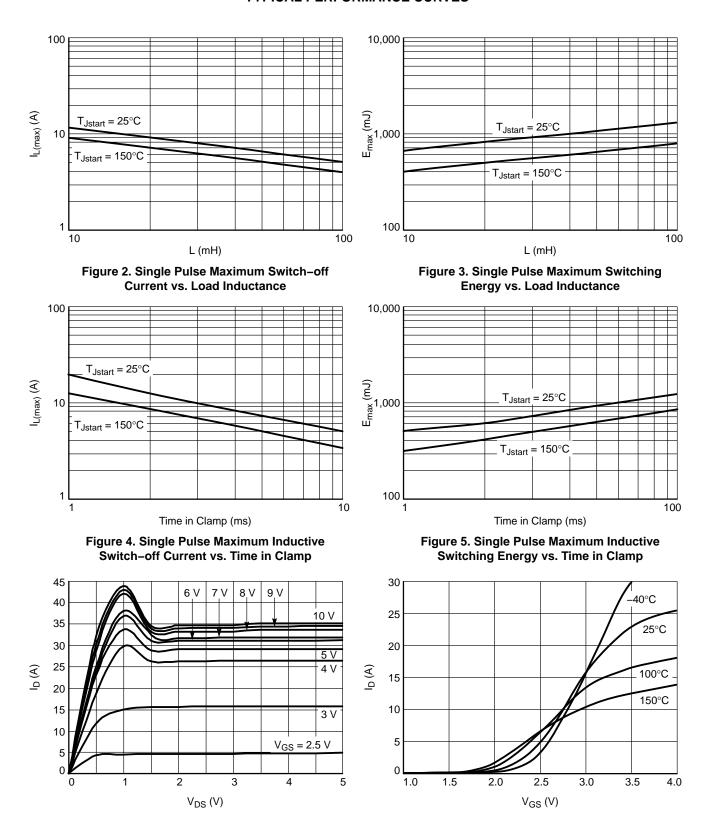
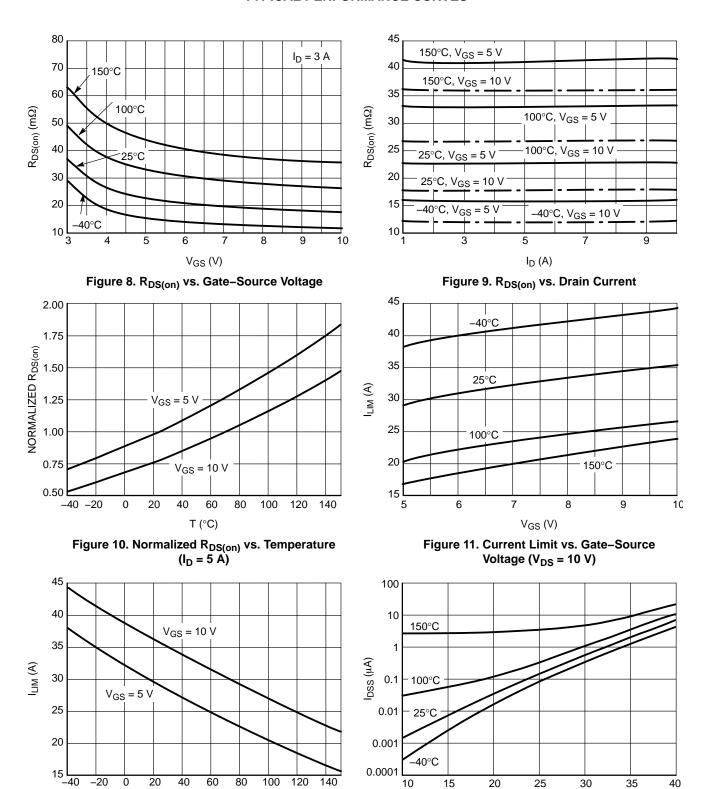
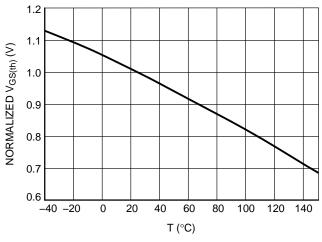


Figure 6. On–state Output Characteristics Figure 7. Transfer Characteristics ($V_{DS} = 10 \text{ V}$) at 25°C

TYPICAL PERFORMANCE CURVES

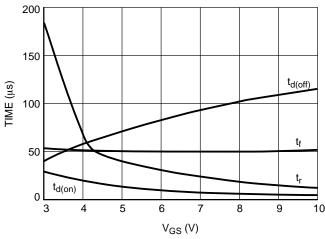



Figure 12. Current Limit vs. Junction Temperature $(V_{DS} = 10 \text{ V})$

T_J (°C)

Figure 13. Drain-to-Source Leakage Current (V_{GS} = 0 V)

 $V_{DS}(V)$


TYPICAL PERFORMANCE CURVES

1.0 0.9 -40°C 8.0 25°C $V_{SD}(V)$ 0.7 100°C 0.6 150°C 0.5 0.4 2 5 6 8 9 10 3 4 I_S (A)

Figure 14. Normalized Threshold Voltage vs. Temperature ($I_D = 1.2 \text{ mA}, V_{DS} = V_{GS}$)

Figure 15. Source-Drain Diode Forward Characteristics (V_{GS} = 0 V)

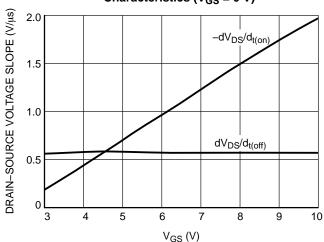
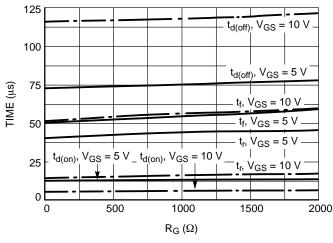



Figure 16. Resistive Load Switching Time vs. Gate–Source Voltage (V_{DD} = 25 V, I_{D} = 5 A, R_{G} = 0 Ω)

Figure 17. Resistive Load Switching Drain–Source Voltage Slope vs. Gate–Source Voltage (V_{DD} = 25 V, I_{D} = 5 A, R_{G} = 0 Ω)

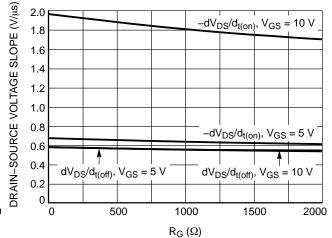


Figure 18. Resistive Load Switching Time vs. Gate Resistance ($V_{DD} = 25 \text{ V}$, $I_D = 5 \text{ A}$)

Figure 19. Drain–Source Voltage Slope during Turn On and Turn Off vs. Gate Resistance ($V_{DD} = 25 \text{ V}, I_D = 5 \text{ A}$)

TYPICAL PERFORMANCE CURVES

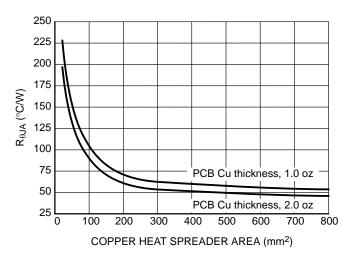


Figure 20. $R_{\theta JA}$ vs. Copper Area

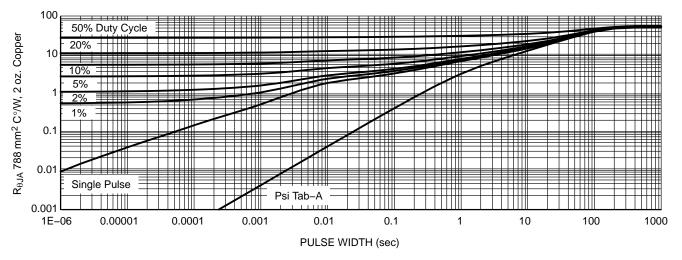


Figure 21. Transient Thermal Resistance

TEST CIRCUITS AND WAVEFORMS

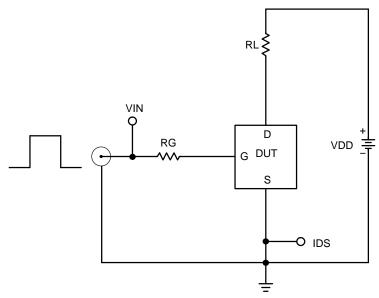


Figure 22. Resistive Load Switching Test Circuit

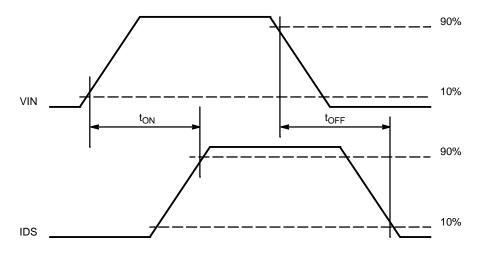


Figure 23. Resistive Load Switching Waveforms

TEST CIRCUITS AND WAVEFORMS

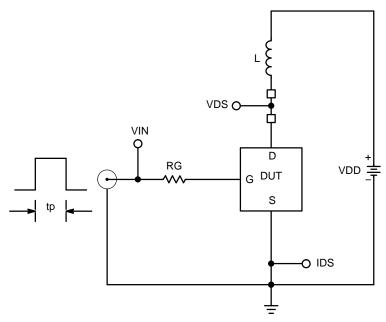


Figure 24. Inductive Load Switching Test Circuit

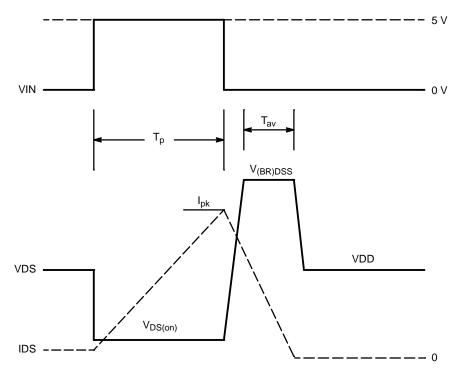
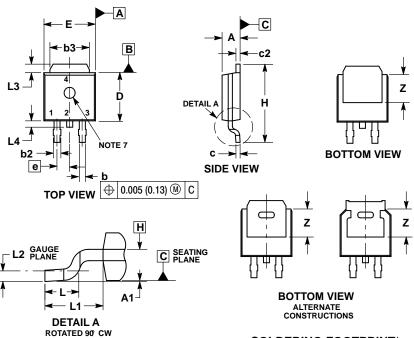
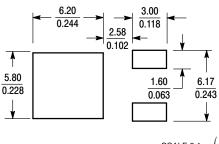



Figure 25. Inductive Load Switching Waveforms

PACKAGE DIMENSIONS

DPAK CASE 369C ISSUE F

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCHES.
- THERMAL PAD CONTOUR OPTIONAL WITHIN DI-MENSIONS b3, L3 and Z.
- MENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
- 5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.
- 7. OPTIONAL MOLD FEATURE.


	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.028	0.045	0.72	1.14
b3	0.180	0.215	4.57	5.46
С	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
E	0.250	0.265	6.35	6.73
е	0.090	BSC	2.29 BSC	
Н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.114 REF		2.90 REF	
L2	0.020	BSC	0.51 BSC	
L3	0.035	0.050	0.89	1.27
L4		0.040		1.01
Z	0.155		3.93	

STYLE 2:

- PIN 1. GATE 2. DRAIN

 - 3. SOURCE 4. DRAIN

SOLDERING FOOTPRINT*

mm SCALE 3:1

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

HDPlus is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: NCV8401ADTRKG